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A B S T R A C T

In this work, we present an approach to reconstruct high-resolution flow velocity or scalar fields from sparse
particle-based measurements such as particle tracking velocimetry, thermographic phosphors or pressure-sen-
sitive particles. The proposed approach can be applied to any of those fields; without leading its generality, it is
hereby assessed for flow velocity measurements. Particles allow probing physical quantities at multiple time
instants in randomly located points in the investigated region. In previous works, it has been shown that high-
resolution time-averaged fields can be estimated by an ensemble average of the particles contained into spatial
bins whose size can be reduced almost ad libitum. In this work, high-resolution ensemble particle modes are
estimated from the ensemble average of particles, weighted with Proper Orthogonal Decomposition time coef-
ficients which are estimated from low-resolution spatially-averaged fields. These modes represent a self-tunable
compressed-sensing library for the reconstruction of high-resolution fields. High-resolution instantaneous fields
are then obtained from a linear combination of these modes times their respective time coefficients. This data-
enhanced particle approach is assessed employing two DNS datasets: the wake of a cylinder and a fluidic pinball.
It is shown here that it is possible to reconstruct phenomena whose characteristic wavelength is smaller than the
mean particle spacing whenever such events are correlated with any other flow phenomenon with a wavelength
large enough to be sampled. The proposed approach is also applied to experimental wind-tunnel data, again
showing excellent performances in presence of realistic measurement-noise conditions.

1. Introduction

Seeding particles allow probing scalar and vector quantities in a
flow providing insightful spatial information both about velocity fields
-employing techniques such as the now widespread Particle Image
Velocimetry (PIV) [1,2]- and scalar quantities such as temperature or
pressure [3,4].

However, the characterization of turbulent flows is extremely de-
manding due to the large range of scales involved. A typical figure of
merit is the Dynamic Spatial Range (DSR), defined as the ratio between
the largest and the smallest measurable scale in a flow [5]. Recently, a
generalized definition has been proposed [6], in which the smallest
measurable scale is equal to the interrogation-window size in cross-
correlation algorithms, or is a function of the average inter-particle
distance in Particle Tracking Velocimetry (PTV). In all cases, supposing
a typical interrogation-window size of 32 pixels (which is a good
compromise between the desire of a high resolution and an acceptable
level of noise), the DSR is of the order of L0.03 in planar PIV, where L is
the linear sensor size in pixels. In 3D velocimetry, due to the need of

reconstructing a particle distribution in a volume, the scaling with the
sensor length is even less than linear. However, spatial scales in tur-
bulent flows have a wide spectrum, being the ratio between integral
and Kolmogorov scale proportional to −Re 3/4 [7], where Re is the
Reynolds number based on the large-scale size and velocity. The need of
satisfying this requirement has motivated intense efforts to improve the
measurement DSR in the last 20 years. Most recent advances in 3D PTV
(see for instance the results of the 3D test cases of the 4th International
PIV Challenge [8]) are demonstrating superior performances of par-
ticle-tracking approaches. Nonetheless, it is needed a radical change of
approach to go beyond the limit set by the average inter-particle spa-
cing.

DSR limitations have been easily overcome for turbulent statistics
with ensemble-correlation [9,10] and ensemble-particle-averaging
[11–13] approaches. Ensemble-particle averaging has widely demon-
strated superior performances [12,14] than cross-correlation-based
techniques. Ensemble PTV is based on generating dense velocity-vector
distributions using data from different snapshots, and binning the cloud
of vectors to locally extract turbulent statistics. The ensemble PTV
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approach exploits the ergodicity of the flow obtaining time-average and
flow statistics among the available samples in each bin and does not
require that samples at each bin are recorded simultaneously. Despite
employing very sparse datasets (in which the particle image con-
centration can be well below 0.05 particles per pixel), the ensemble
approach allows increasing almost ad libitum the DSR of turbulent sta-
tistics, employing a sufficiently-large number of snapshots. In fact, as
shown by Kähler et al. [12], the bound of the root-mean-square error of
the particle-center detection results in a sub-pixel resolution limit for
the ensemble PTV.

When dealing with instantaneous fields, however, PTV provides
velocity measurements only in the spatial locations in which particles
are available, resulting in a sparse sampling of the velocity field. If we
consider the most intuitive approach of re-interpolating the velocity
fields on a structured grid, the instantaneous-field resolution is bound
to the particle sampling of the instantaneous fields, i.e. to the spacing
between the particles. Nevertheless, if a dictionary of flow structures
were available, the gaps between velocity vectors could be filled in the
instantaneous fields in the same way a contestant would solve the word
puzzles in the TV show Wheel of Fortune.

Gappy fields are usually completed employing kriging [15] or
Proper Orthogonal Decomposition (POD) approaches [16]. Probably
the best results over gappy data have been obtained with approaches
such as the marred faces reconstruction [16] or the gappy-POD filling
procedures [17,18]. In these works, gappy fields are seen as snapshot
vectors with zero values in correspondence of the gaps. The gappy fields
are employed to estimate non-gappy modes of the flow field which are
then linearly combined using a temporal basis to obtain the in-
stantaneous fields with no gaps. In the work by Everson and Sirovich
[16], the temporal basis is estimated directly by carrying out a proper
orthogonal decomposition of the gappy data, while Venturi and Kar-
niadakis [17] proposed to adjust it iteratively by progressively adding
modes and thus filling the gaps. It has to be remarked here that using

the full set of modes would return the original gappy dataset; for this
purpose, Raben et al. [18] proposed a criterion based on data
smoothness for the choice of the number of modes to be employed to fill
the gaps. The stopping method relies on the regularized spatial basis of
PIV or of PTV data interpolated on a Eulerian grid, thus not requiring an
iterative procedure. However such methods have demonstrated to be
successful in turbulent environments [19] only for relatively-low gap-
pyness levels.

Merging the ideas of gappy POD and of ensemble-particle-averaging
approaches, the method proposed here aims at reconstructing high-re-
solution instantaneous fields as a linear combination of high-resolution
modes, referred to as ensemble particle modes. These modes are esti-
mated from the ensemble average of particles, weighted with POD time
coefficients which are computed from low-resolution spatially-averaged
fields. The ensemble particle modes represent a self-tunable dictionary
for the compressed sensing of the high-resolution flow fields. The whole
learning procedure is unsupervised, with minimal input from the user
and is named here Data-Enhanced Particle Tracking Velocimetry (from
now on DEPTV).

The method is outlined in Section 2. A validation (Section 3) is
carried out with steps of increasing complexity. The first test case is the
wake of a cylinder at =Re 100 (Section 3.1), with velocity vectors di-
rectly extracted from a DNS database. The second test case (Section 3.2)
is the wake of the fluidic pinball [20,21], i.e. an arrangement of three
cylinders whose centres form an equilateral triangle. For this test case,
virtual images are generated, thus introducing also effects of noise
contamination due to particle-localization uncertainty. The DEPTV is
finally assessed against an experimental test case in Section 4. The
experiment consists of the measurement of the wake of two cylinders
with different diameters, one being sufficiently large to be adequately
discretized by standard cross-correlation-based PIV, and the second one
with a diameter of the order of the interrogation-window size, which
clearly challenges the resolution limits of PIV algorithms.

Fig. 1. Flowchart of the proposed Data-Enhanced PTV.
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2. Algorithm description

The proposed algorithm is outlined in the flow chart of Fig. 1. The
resolution enhancement is achieved through the calculation of spatial
modes with a resolution higher than that of the PIV snapshots (i.e. with
grid elements, from now on bins, smaller than the PIV interrogation
window). The high-resolution spatial modes are calculated from the
ensemble averaging into small bins of the PTV vectors from the whole
dataset, weighted with an appropriate temporal basis.

First of all, the images undergo a “traditional” processing step. Data
on an Eulerian grid are obtained using either a standard cross-correla-
tion-based PIV analysis on the raw images or interpolating PTV data
onto a fixed grid. The fluctuating part = u v wu [ , , ] of the velocity field

= U V WU [ , , ] is stored in the form of the snapshot matrix
∈ ×UPIV

N pt� , with Nt being the number of snapshots and p being the
number of grid points. Then, following the snapshot implementation
[22], POD is carried out to obtain the decomposition basis in space,
ΦPIV , and time, ΨPIV .

=U Ψ ΦΣPIV PIV PIV PIV
T (1)

The same images are then analyzed with a PTV algorithm to identify
particle pairs for each snapshot. This data will be the basis to obtain
high-resolution ensemble particle modes on a structured grid. Such grid is
defined within the space domain, and each grid point corresponds to a
bin and collects the PTV data of the particles that lie within each bin.

The high-resolution spatial modes are calculated by projecting the
PTV dataUPTV on the PIV temporal basisΨPIV . The data matrixUPTV can
be formally approximated as the Hadamard product of the unknown
high-resolution velocity field UHR times a Dirac delta function matrix,
with zeros entries in the locations with no velocity information:

= ⊙U δ UPTV HR (2)

To account for the sparsity of UPTV , ensemble particle modes are
obtained as a weighted average of PTV vectors (projected on the POD
temporal basis from PIV) in each bin. The following expression is used
to estimate the ensemble particle modes ϕσi iDEPTV DEPTV to account for the
different number of data points per bin (referred to as occurrences):
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where N x( )occ j is the number of occurrences per bin, ′p is the number of
grid points of evaluation, ϕiDEPTV is the ith “unitary-norm” ensemble
particle mode and σiDEPTV is its corresponding norm.

In matrix form, Eq. (3) reads as:

= ⊙Φ N Ψ UΣ( )T
DEPTV PIV

T
PTV (4)

where ∈ × ′N N pm � . The rows of N contain the scaling factors N N x/ ( )t occ j
to account for the sparsity of the bins, i.e. not all bins contribute
Nt-times to the product in Eq. (3).

The achievable size b of the bins (supposed square for simplicity)
depends on the desired number of particles required to achieve suffi-
cient statistical convergence. It can be determined by:

=b
N

N N·
p

t ppp (5)

where Np is the desired number of particles per bin, Nt is the number of
snapshots and Nppp is the particle image density, expressed in particles
per pixel. As evident from Eq. 5 the bin size can be decreased (and thus
the spatial resolution of the ensemble particle modes can be increased)
ad libitum, down to the spatial resolution limit of ensemble PTV, by
increasing the number of snapshots.

A low-order reconstruction of the instantaneous velocity field is
performed using the highly-resolved POD modes of the PTV data and
the PIV temporal modes to compute high-resolution velocity fields. The

estimated high-resolution snapshot matrix UHR is:

=U Ψ ΦΣ( )HR PIV
T

DEPTV (6)

where the elements of ΦΣ( )T
DEPTV are computed according to Eq. (3).

The effects of the presence of the gaps was included in the modal
decomposition in none of the above-mentioned algorithm [16–18].
With the weighting factor N N x/ ( )t occ j included in Eq. (3), the energy
assigned to each grid point is properly scaled, provided that satisfactory
statistical convergence is achieved.

It has to be remarked herein that the high-resolution snapshots are
obtained employing the POD temporal basis of the low-resolution
fields. Consequently, the present methodology is only able to recover
the high-frequency part of the large-scale spatial modes which were
already measured (even if modulated in intensity) with the low-re-
solution PIV.

3. Validation

3.1. DNS of the wake of a cylinder

3.1.1. Database and numerical settings
The first validation test case is from a Direct Numerical Simulation

(DNS) of the two-dimensional fluid flow past a cylinder with =Re 100.
The database was obtained from Ref. [23] (www.dmdbook.com). The
original dataset was generated using an Immersed Boundary Projection
Method [24,25]. The spatial resolution is ×199 449 points, covering a
domain of ×9 4 diameters D in the ranges ∈ −x D/ [ 1, 8] and

∈ −y D/ [ 2, 2] and it contains 151 snapshots. The vortex shedding in the
wake is periodic, with a periodicity of 30 snapshots. The contour plot of
the fluctuating streamwise velocity component, together with a super-
imposed vector-arrow representation of the fluctuating velocity field, is
reported in Fig. 2.

For this validation, the resolution of the snapshots of the virtual
experiments is reduced to ×100 225 pixels, i.e. 2 pixels are equivalent
to 1 DNS grid point. Pseudo-PIV fields are generated by filtering the
DNS data with a top-hat filter of ×40 40 pixels. From simplicity of
notation, from now on we will refer to it simply as PIV. Data are ex-
tracted with a step of 10 pixels, thus simulating PIV fields with an in-
terrogation window of ×40 40 pixels and 75% overlap.

The particle image density is fixed to =N 0.02ppp particles per pixel,
with mean particle spacing of about 7 pixels. The DEPTV grid is set with
grid spacing =dx 4 pixels, leading to ×23 55 vectors. A parametric
study is carried out by varying the bin size and the number of particles
per bin for each number of snapshots. The bin size has to be tuned
depending on the number of images and the number of particles per
bin, according to Eq. 5.

3.1.2. High-resolution POD modes
A comparison of the modes 2, 4 and 6 of the streamwise velocity

component is displayed in Fig. 3. The spatial modes of the DNS are

Fig. 2. Original snapshot from the DNS database of the wake of a cylinder at
=Re 100 [23]. Contour of the fluctuating part of the streamwise velocity

components, superposed with vector arrows of fluctuating velocity. Velocities
are referenced to the free stream velocity.
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obtained by projection on the PIV temporal basis ΨPIV to provide a
direct comparison with PIV and ensemble particle modes; for the same
purpose the modes are multiplied by the square root of the number of
grid points so that they have unitary norm when integrated over the
area. The modes obtained as the projection of the DNS fields on the PIV
temporal basis are referred to as extended POD modes, following Ref.
[26]. The mode 2 of PIV can identify the fluctuations due to the wake
shedding (which is largely modelled by the first two modes as a

travelling wave), but with evident spatial filtering issues if compared to
the DNS spatial mode. In mode 4 a higher-order harmonic is identified,
even though also in this case smoothing is evident in the near field. The
structure of mode 6 from standard PIV is completely distorted, since it
involves scales smaller than the PIV interrogation window.

The second row of Fig. 3 reports the spatial modes obtained through
the proposed Data-Enhanced PTV, setting 800 particles per bin on a set
of 1510 images, thus corresponding to a bin size of 5.1 pixels according
to Eq. 5. In this case the bin size is smaller than the average particle
distance, and it corresponds to approximately a 50% gappyness level in
each snapshot (i.e. each bin contains on average about 0.5 particles per
snapshot). DEPTV can recover also the flow organization close to the
cylinder in both modes 2 and 4. It is worth highlighting that this is a
perfect example of high-frequency content which is recovered with the
present methodology, starting from a large-wavelength mode. Mode 6
resembles quite clearly the pattern observed in the extended DNS
modes, even though contaminated by noise. For this reason, a data
smoothing with a Savitzky-Golay filter of the 2nd order is proposed. This
filter has already been introduced in the Ensemble PTV algorithms to
reduce the effects of poor resolution due to finite bin size on the
computation of the Reynolds stresses [13]. The advantage of the ap-
plication of the Savitzky-Golay filter is that the peaks are reasonably-
well preserved, while the random noise is effectively suppressed in POD
modes which are expected to be smooth in the majority of in-
compressible flow PIV measurements. The filtered DEPTV modes of the
third row of Fig. 3 are the basis for the low-order reconstruction of high-
resolution velocity fields.

The singular values of the PIV snapshot matrix are displayed in
Fig. 4 for the same case of =N 1510t . The norm of the extended POD
[26] modes obtained from the DNS database by projection on the PIV
temporal modes, and of the modes obtained by Eq. (3) before and after
the application of the Savitzky-Golay filter, are reported for compar-
ison. Without leading the generality, we will refer to these values as the
norm of the spatial modes (including the PIV dataset). Indeed, while for

Fig. 3. Comparison of the POD spatial modes 2, 4 and 6. From the top row to the bottom: PIV; Data-Enhanced PTV; Data-Enhanced PTV after polynomial smoothing;
DNS spatial modes obtained after projection on the PIV temporal base ΨPIV . For the DEPTV the following parameters have been set: = =N N800, 1510p t and bin size
of 5.1 pixels.

Fig. 4. Singular value distribution of the PIV snapshots and the original DNS
database, superposed with the norm of the extended POD modes with and
without polynomial filtering. For the DEPTV the following parameters have
been set: = = =N N b800, 1510, 5.1p t pixels. The singular values are normal-
ized with the sum of the singular values of the DNS case, and scaled to account
for the number of grid points as in Eq. 7. Inset figure displays the distribution of
the first 8 modes in a linear vertical scale.
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PIV data it can be properly used the nomenclature “singular values”, for
the DNS and DEPTV datasets the obtained extended modes are not
necessarily sorted by their energy contribution. For a proper compar-
ison, the squared norm of the modes is normalized with the number of
grid points to take into account the fact that the datasets are defined on
different grids, and are normalized by the sum of the squared singular
values computed for the DNS case:

̂ =
∑ =

σ
σ

σ

p
pi

i

i
N

i DNS

DNS2
2

1 ,
2m DNS, (7)

where N σ,m DNS i DNS, , and pDNS are respectively the number of modes,
singular values and number of grid points of the original DNS database,
σi and p are the singular values and number of grid points of PIV or
DEPTV, depending on the analyzed case, and ̂σi are the normalized
singular values.

The scaled norm of the PIV modes has lower intensity than the norm
of the extended POD modes of the dataset due to spatial filtering effects
of the PIV interrogation window. DEPTV can recover in full this issue
for the first 6 modes. Starting from mode 10, while the norm of PIV and
DNS modes is rapidly decreasing for increasing mode number, the norm
of the ensemble particle modes reaches a substantially stable level. By
visual inspection of the modes, it is clear that this plateau corresponds
to modes contaminated by noise. The definition of the standard error,
for normally-distributed data sets, suggests that the convergence error
of the mean and or of the statistics is proportional to the signal standard
deviation divided by the square root of the number of samples over
which the mean and the statistics are computed [27]. It can thus be
hypothesized that higher-order modes which contain a contribution to
the total flow variance equal to or smaller than the typical value of

N1/ occ are affected by such high level of measurement noise that can
not be recovered with the ensemble-particle approach. The flow-field
reconstruction is thus carried out by retaining only the first 10 modes,
using the plateau of the norm of the DEPTV modes to set the cutoff
mode number.

3.1.3. Reconstruction error
Fig. 5 shows the normalized standard deviation of the error of UHR

compared with the original dataset as a function of the squared bin size
for three different numbers of snapshots. The error is estimated as in
Eqs. (8)–(10).
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Here ̂u and ̂v are the measured velocity fluctuations in the streamwise
and crosswise directions respectively. In all the cases, there is an op-
timum bin size that minimizes the error. Increasing the bin size with a
fixed number of images, the number of occurrences within each bin
increases, thus reducing the random error in the estimated modes. On
the other hand, increasing the bin size also increases the spatial filtering
effects due to finite spatial resolution, thus introducing more significant
systematic errors. For a given number of snapshots acquired with a
certain particle density, the optimum number of particles (and thus the
bin size) is a compromise between these two contributions. Also, in all
cases, a significant reduction of the total error with respect to the
standard PIV algorithm is observed.

The effect of the cutoff choice on the average error (according to
Eqs. (8)–(10)) is presented in Fig. 6. The error is also estimated for the
corresponding low-order reconstruction from PIV using an increasing
number of modes. The DEPTV-based reconstruction is carried out set-
ting a number of particles per bin equal to 800 and for three different
sets of images ( =N 1510, 3020t and 6040, corresponding respectively to
a bin size of 5.1, 3.6 and 2.6 pixels). The inclusion of the most energetic
modes reduces rapidly the error up to 8 modes, with a significantly
faster rate than the standard PIV. DEPTV is indeed able to achieve
better resolution for the most energetic large-scale modes, not only in
terms of spatial distribution (Fig. 3) but also in terms of corresponding
energy content (Fig. 4). For the case of PIV, the error decreases
monotonically until reaching an asymptotic value, which corresponds
to the systematic error due to finite spatial resolution. For DEPTV there
is an optimum number of modes for the reconstruction, beyond which
the poor convergence of the modes is detrimental for the reconstruction
accuracy. By comparison between Fig. 4 and Fig. 6, it is clear that this
minimum point corresponds to the start of the plateau of the norm of
the modes obtained from DEPTV.

Assuming that the noise contained in the ensemble particle modes is
due to insufficient statistical convergence, it is expected to be random
and uniform among the modes. This hypothesis is in agreement with the
mode norm versus mode number reported in Fig. 4 which, after a
certain number of modes, becomes practically constant, slowly ap-
proaching an asymptotic value. As an empirical criterion for mode
truncation in the low-order reconstruction, based on the empirical
evidence of present test cases, it is advisable to truncate the re-
construction with the mode whose norm is 20% larger than the
asymptotic value.

Finally, a low-order reconstruction of the instantaneous velocity
field using 10 modes is displayed in Fig. 7. Contours of the fluctuating

Fig. 5. Error of standard PIV and DEPTV as a function of the square bin size for
three different image datasets.

Fig. 6. Error in the flow field as a function of the number of modes. =N 800p .
Bin sizes of 5.1, 3.6, 2.6 pixels for = =N N1510, 3020t t and =N 6040t respec-
tively.
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streamwise velocity component with superposed vector representation
of the fluctuating velocity field for PIV and DEPTV are assessed against
the original DNS field. The DEPTV reconstruction is reported in this
case for = =N N1510, 800t p and a corresponding bin size of 5.1 pixels.
The proposed DEPTV method can recover the correct intensity of the
peaks of the streamwise velocity fluctuations, which were significantly
attenuated by the original PIV processing. Additionally, the information
in the near-field of the cylinder wake is recovered. The velocity fluc-
tuations in the near wake were completely cancelled by the PIV pro-
cessing due to spatial-resolution limitations; nonetheless, due to the
statistical correlation of the near field region with the developing wake,
the temporal basis obtained from the POD of the PIV fields is a suffi-
cient input to recover it with the proposed DEPTV approach.

3.2. Fluidic pinball

3.2.1. Database and numerical settings
The second test case is the flow in the wake of a set of three cy-

linders with equal radius =R D/2, whose centres form an equilateral
triangle with side length equal to R3 . The triangle is oriented with an
upstream vertex and with the downstream side orthogonal to the
freestream flow, located at =x 0 and centred with respect to the y axis.
This configuration, referred as fluidic pinball [21], is an extremely in-
teresting test case for flow-control applications. For the purpose of this

work, the wake of the pinball provides additional challenges to the
previous test case, with the interaction of the wakes of three bodies, a
region of development and the final merging in a large-scale unique
shedding wake. DNS data at =Re 130 (referred as chaotic regime [21])
are used to generate synthetic PIV images. The details of the simulation
settings and flow behaviour can be found in Refs. [20,21,28]. An ex-
ample of a snapshot is presented in Fig. 8, with the contour of the in-
stantaneous out-of-plane vorticity and superposed computational mesh.

Differently from the previous case, here synthetic PIV images are
generated with a custom-made code. Gaussian blobs with a maximum
intensity of 100 counts and 2.5 pixels diameter are generated on 8-bit
images. A total of 5000 snapshots has been generated; since the flow is
periodic with a period of approximately 100 snapshots, this corre-
sponds to 50 periods. The flow field covers the range ∈ −x D D D/ [ 5 , 15 ]
in the streamwise direction and ∈ −y D D D/ [ 5 , 5 ] in the crosswise di-
rection, with a resolution of 25 pixels/D.

The images are processed with a custom-made multi-pass [29]
image deformation [30] PIV algorithm developed at the University of
Naples [31]. The interrogation window is set to ×40 40 pixels with 75%
overlap. Particle Tracking is carried out with a super-resolution ap-
proach [32], i.e. the PIV fields are used as a predictor to identify par-
ticle image pairs.

3.2.2. High-resolution POD modes
The singular values of the original dataset and the PIV are reported

in Fig. 9. For this purpose, the DNS data are interpolated on a regular
grid with spacing equal to 4 pixels. The norms of the extended modes
with the proposed DEPTV before and after smoothing with the Sa-
vitzky-Golay filter are included for comparison. The data are presented

Fig. 7. Comparison of the instantaneous flow field. = = =N N b1510, 800, 5.1t p

pixels.

Fig. 8. Original snapshot of the fluidic pinball DNS database. Contour of the
out-of-plane vorticity, superposed on the DNS mesh.

Fig. 9. Singular values distribution of the PIV snapshots and the original DNS
database, superposed with the norm of the ensemble particle modes with and
without polynomial filtering, for the fluidic pinball test case. = =N b0.01, 4ppp

pixels, =N 5000t . The singular values are normalized with the sum of the sin-
gular values of the DNS case, and scaled to account for the number of grid
points as in Eq. 7.
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here in a linear scale to make evident the differences in the first modes.
The asymptotic behaviour is similar to the one observed in Fig. 4
(which was instead presented in logarithmic scale).

A comparison of an instantaneous flow field obtained with PIV and
DEPTV for a bin size of 4 pixels is reported in Fig. 10. The out-of-plane
vorticity is computed on the same grid for PIV, DEPTV and DNS to
eliminate discrepancies due to truncation errors. The out-of-plane
vorticity maps highlight that PIV can resolve the vorticity released in
the far-wake since, after merging, the scales are sufficiently large with
respect to the interrogation window. Nonetheless, some attenuation of
the vorticity peaks is observed, due to a combination of amplitude
modulation of the PIV processing.

In the near-wake and in the region around the cylinders, the per-
formances of DEPTV are superior to those of standard PIV, with an
excellent recovery of the vorticity in the shear layers and in the de-
veloping regions around the cylinders.

3.2.3. Reconstruction error
A quantitative comparison of the statistics of the reconstruction

error for different bin sizes is reported in Fig. 11. The error is computed
as in Eqs. 8 and 9.

The error map obtained for PIV is compared with:

• DEPTV on the full dataset (5000 snapshots) with bin size equal to 4,
corresponding to 800 particles per bin on average;

• DEPTV on partial dataset (1000 snapshots) with bin size equal to 8,
corresponding to 640 particles per bin on average;

• DEPTV on partial dataset (1000 snapshots) with bin size equal to 4,
corresponding to 160 particles per bin on average.

The PIV error map highlights that the largest error is observed in the
near wake and in the region close to the cylinders, where the flow
characteristic scales are significantly smaller than the PIV interrogation
window. In the far wake, due to the merging of the shedding wakes of
the cylinders, the flow scales are larger, thus the bias errors due to finite
spatial resolution are smaller.

Regarding DEPTV, using a smaller bin reduces the modulation error,
especially in the region between the three cylinders and close to the
cylinder surfaces. This is obtained at the expenses of the random error
due to poor convergence of the ensemble particle modes if the number
of particles per bin is not sufficiently large (see Fig. 11, bottom right). A
good compromise should be found between the number of particles per
bin and the bin size. Since the convergence of POD relates directly to
second-order statistics, a reasonable criterion for the bin size is to have
a number of particles per bin equal to the number of snapshots needed
to achieve good convergence of the Reynolds stresses in an ensemble
PTV approach. A general criterion is difficult to define, since indeed the
convergence is dependent on the spectral richness of the flow.

To this purpose, a parametric study of the effect of the bin size and
of the cut-off selection on the spatially-averaged error ̂εr is carried
out. The error is evaluated in the full field and in the near field
downstream of the pinball (i.e. ∈ − ∈ −x D y D/ [ 2, 3], / [ 3, 3]). For the
parametric studies on the bin size, the DEPTV cut-off is always set to 40
modes for simplicity.

In the near field larger systematic error is expected due to finite
spatial resolution, as already observed in Fig. 11, while in the far field
random error are dominant.

The error ̂εr as a function of the normalized squared bin size is
reported in Fig. 12. When considering the full field, the error reduction
is limited since the resolution limits of PIV are affecting the measure-
ment accuracy only in a small portion of the field. Since the random
error is dominating in most of the domain, a large number of snapshots
is required to improve the accuracy if compared to the PIV results. If a
sufficiently large number of snapshots is available (for this test case

>N 2500t ) an overall improvement is observed for a wide range of
squared bin size (i.e. for < <b3 17 pixels).

In the near field, the systematic error is dominant, thus DEPTV
significantly outperforms the standard PIV process. For relatively-small
bin size the systematic error of DEPTV is negligible; thus the error
improves with an increasing number of snapshots. For instance, for the
smallest bin size =b 1 pixel, the error scales approximately with the
square root of the number of snapshots. For increasing bin size, a
progressively larger share of error is due to finite spatial resolution,
thus this improvement is less evident. For relatively large bin size, the
systematic error is dominating, thus all curves collapse independently
on the number of snapshots for the investigated range.

As observed in the previous test case, the selection of the number of
modes for the reconstruction is critical to minimize the contamination
of the reconstructed fields due to the introduction of modes with poor
convergence. While for the cylinder wake the spectral compactness of
the modal decomposition provided a trivial selection of the few sig-
nificant modes, in this case, the fields exhibit wider spectral richness
(see Fig. 9), thus posing the question of the most effective cut-off se-
lection. In Fig. 13 the effect of the selection of the number of modes on
the spatially-averaged error is investigated and compared to the error
achieved by a low-order reconstruction based on the PIV fields and
truncated with the same number of modes. In all cases it can be ob-
served that it exists an optimum number of modes which minimizes the
reconstruction error. This is a consequence of the convergence issues for
higher-order modes, which carry a lower share of energy. For a fixed
number of snapshots ( =N 1000t ) increasing the bin size provides a
slight improvement, displacing the optimum cut-off for the re-
construction to higher-order mode number. This is due to the reduction

Fig. 10. Comparison of an instantaneous flow field for the fluidic pinball test
case. = =N b0.01, 4ppp pixels, =N 5000t . Raw PIV data and reconstruction with
40 modes for DEPTV. DEPTV reconstruction is performed with ΨPIV obtained
from a regular PIV in a coarse grid. The PIV vorticity is calculated in the same
grid as the DEPTV in order to have a fair vorticity comparison.
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of the random error; indeed doubling the linear bin size leads to 4 times
more particles on average for each bin. At fixed bin size =b 4 pixels,
the same effect is appreciated for an increasing number of samples
(reduction of the minimum error and shift to the right of the minimum
point). For the most energetic modes, there are no significant differ-
ences since 1000 snapshots are sufficient in this case to achieve sa-
tisfactory convergence.

In the near field, DEPTV significantly outperforms PIV thanks to the
significant reduction of systematic errors due to the limited resolution.
In this case, for fixed =N 1000t , a significant reduction of the minimum
error is observed when reducing the bin size, as well as of the error on
the most energetic modes. This is a consequence of the dominance of
the finite resolution errors in this part of the field. It can be also

observed that, at fixed bin size, the error is weakly dependent on the
number of snapshots, and is mostly defined by the bin size.

3.2.4. Setting the threshold
The problem in practical applications is that the curves of Fig. 13

are not available since, of course, the ground truth is unknown. The
definition of an optimal threshold has been discussed in several recent
works [33–35]. In this case, such methods are not of direct use since the
high-resolution modes are extended modes, rather than the direct out-
come of a Singular Value Decomposition. In this last case, the random
error follows a Marchenko-Pastur distribution [35], while the high-
order extended POD modes obtained with the DEPTV procedure reach
asymptotically an energy level which depends on the measurement

Fig. 11. Standard deviation of the error in the reconstructed flow fields for PIV (top left) and DEPTV with bin size of 4 with full dataset (top right) and bin size of 8
and 4 with only 1000 snapshots (bottom left and right, respectively). The error is normalized with the standard deviation of the velocity fluctuations of the DNS data.
For the DEPTV cases the reconstruction is carried out with 40 modes.

Fig. 12. Error on the velocity field as a function of the bin size. Error evaluated in complete space domain for figure in the left and in ∈ −x D/ [ 2, 3] and ∈ −y D/ [ 3, 3]
for figure in the right, as indicated by the red rectangles within each plot. For DEPTV the cut-off is set to 40 modes for all cases.
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standard error, i.e. on the standard deviation of the velocity, divided by
the square root of the number of particles in each bin [27]. This
asymptotic value is thus a function of the noise level of the estimated
modes and can be used to set an empirical threshold.

In Fig. 14 the error in the full field is reported as a function of the
selected threshold. The cut-off is expressed in terms of the asymptotic
value of the norm of the extended modes ∞σ (which can be set as the
norm of the highest order extended mode, or as an average of the
highest order ones to reduce scatter). It can be observed that in all
tested cases the spatially-averaged error exhibits a large plateau, which
increases in size as convergence issues due to the random error are
reduced (for instance increasing the bin size or the number of samples).
The results in Fig. 14 suggest that the cut-off can be set by setting

< <∞σ σ1.1 ( / ) 3cutoff
2 with minimal effect on the overall error.

4. Experimental validation

The experimental dataset used for the validation has been obtained
from an experimental campaign carried out in the Göttingen-type wind

tunnel of the Aerospace Engineering Research Group at the Universidad
Carlos III de Madrid. The tunnel has a test section of × ×0.4 0.4 1.5 m.
The maximum wind tunnel speed is 20m/s. The high-pass filtered free-
stream turbulence intensity is below 0.5%.

Two parallel cylinders, with a diameter equal to =D 20 mm and
=d 2 mm respectively, are placed, with their centre located at the same

streamwise location and with their axes orthogonal with respect to the
freestream. The separation between the cylinder axes is equal to D. The
experimental setup is sketched in Fig. 15.

As in the previous test cases, x and y indicate the streamwise and
crosswise directions, respectively. The corresponding velocities are in-
dicated with U and V, with lower-case letters corresponding to the re-
spective velocity fluctuations. The origin of the coordinate system in the

Fig. 13. Error in flow field as a function of the number of modes used in the reconstruction. Error evaluated in complete space domain for figure in the left and in
∈ −x D/ [ 2, 3] and ∈ −y D/ [ 3, 3] for the figure on the right, as indicated by the red rectangles within each plot. Markers are evenly distributed for representation

purposes.

Fig. 14. Error on the velocity field as a function of energy level of last mode
above the asymptotic value.

Fig. 15. Sketch of the experimental setup. (1) Laser (2) Mirror (3) Spherical
lens (4) Cylindrical lens (5) Camera with 50mm objective (6) Camera with
100mm objective (7) Wind-tunnel test section. The red and blue rectangles
indicate the field of view of cameras (5) and (6), respectively. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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streamwise direction is located in the centre of the cylinder section at
the midplane of the test section.

Velocity-field measurements are carried out in the −x y plane. Di-
Ethyl-Hexyl-Sebacate (DEHS) droplets with ∼ 1 μm diameter are gen-
erated with a Laskin nozzle and introduced upstream of the wind-tunnel
settling chamber. A dual cavity Nd:Yag Quantel Evergreen laser
(200mJ/pulse at 15 Hz) with a cylinder and a spherical lens is used to
produce a planar illumination with approximately 1mm thickness in
the measurement region.

Two ANDOR Zyla sCMOS 5.5MP cameras ( ×2560 2160 pixel array,
×6.5 6.5 μm pixel size) were used to capture PIV images. One camera is

equipped with a Tokina objective with 50mm focal length, with a re-
solution of about 10.3 pixels/mm and a magnification of approximately
0.067. This camera is used to carry out the PIV and the DEPTV pro-
cessing and will be referred from now on as test camera. Owing to the
achieved spatial resolution, for this camera the small cylinder diameter
d is discretized with only approximately 20 pixels, while the large cy-
linder diameter D is discretized with about 200 pixels. It is thus to be
expected that a standard PIV processing is not able to resolve the vor-
tices shed in the wake of the small cylinder.

The second camera is equipped with a 100mm focal-length Tokina
objective, with a resolution of 22.6 pixels/mm and a magnification of
about 0.147. This camera is used to build a reference field, owing to the
larger resolution achieved.

The cameras capture particle images simultaneously, with the syn-
chronization controlled by a Quantum composer 9520 Series Pulse
Delay Generator. The time separation between the two lasers is set to
100 μs. The freestream velocity is set to 5.2 m/s, thus resulting in a
displacement of approximately 5.3 and 11.8 pixels on the test camera
and the reference camera, respectively.

An ensemble of 1300 snapshots was acquired for both cameras. A
larger dataset of 12000 snapshots was captured with the test camera to
improve the convergence of the DEPTV method. The particle images of
both datasets have been pre-processed with the POD-based approach
proposed by Mendez et al. [36].

The PIV image analysis was carried out with the same multi-grid
multi-pass code described in Section 3.2. The final interrogation
window is set to ×64 64 pixels with 75% overlap for both the test
camera and the reference cameras. This is equivalent to ×6.2 6.2 mm
for the test camera, and ×2.9 2.9 mm for the reference camera.

Fig. 16. Comparison of the instantaneous streamwise (top row) and crosswise (centre row) velocity components for PIV (left column) and DEPTV (right column) on
the test camera, and PIV carried out on the reference cameras (center column). The bottom row contains insets of the crosswise velocity fields with superposed arrow
vectors. The scale for the bottom row is changed to highlight differences.
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It is important to remark that, since the cameras capture simulta-
neously, the resolution limit for standard PIV is related to the mean
particle spacing for both cameras. For this reason, an artificially large
interrogation window is used for the test camera to guarantee a re-
solution gain when using the reference camera. The particle image
density is indeed set to 0.01 particles per pixel on the test camera, thus
resulting in about 8 and 40 particles per interrogation window for the
reference and test camera, respectively. The reference camera thus
reaches higher spatial resolution at the expense of higher sensitivity to
noise. For this reason, it will be considered as a reference only for
statistics assessment and not for direct instantaneous field comparison.
Even if for the present test case it is not available a fully-trustworthy
ground truth, it has to be noted here that the present section is aimed at
assessing that the proposed methodology provides reliable results in
presence of real experimental data. While the synthetic test cases allow
characterizing in detail the performance of the method, real imaging
and measurement noise conditions are used to test the proposed
method.

DEPTV is carried out with bins of ×16 16 pixels with 50% overlap,
thus aiming at an increase of the spatial resolution of a factor of 4.

A calibration target with black dots on a white background is used
to project the images of the two cameras onto the same world co-
ordinate system. The laser sheet position is identified with a stereo-
scopic self-calibration [37]. This allows direct comparison between the
test and reference results and reduces the systematic errors on the
magnification measurement [38].

A comparison of the instantaneous streamwise and crosswise velo-
city fields obtained by standard PIV on the test and reference cameras,
and with DEPTV on the test camera is reported in Fig. 16. The results
are presented in non-dimensional form using the large-cylinder dia-
meter D and the freestream velocity ∞U as reference length and velocity
scales, respectively. The wake of the largest cylinder is captured with
reasonable accuracy by the standard PIV, with weak smoothing if
compared to the reference and the DEPTV fields. Larger differences are
observed in the wake of the smallest cylinder, in particular for what
concerns both the streamwise momentum defect (underestimated by
the standard PIV process) and the strong attenuation of the vortices
shed in the wake. This is particularly evident from the observation of
the contour plots of the crosswise velocity component (bottom row of
Fig. 16).

A quantitative comparison is carried out in terms of a streamwise
spectrum of the crosswise velocity fluctuations for =y D/ 0.95 (see
Fig. 17), where the shedding signature of the small cylinder should be
observed. The frequency range is presented in a non-dimensional form
with the Strouhal number St based on the diameter of the small cylinder
and on the freestream velocity. Considering that the Reynolds number
based on the small cylinder diameter is ≈ 700, the wake Strouhal
number for an isolated circular cylinder would be about 0.2 [39].

The attenuation of the crosswise velocity fluctuations for the stan-
dard PIV is observed in the streamwise spectrum. The expected peak,
detected in the reference at higher resolution, is not present in the
spectrum of the low-resolution PIV data. This is not surprising since the
size of the interrogation window (about 3.5 times the diameter of the
smallest cylinder) corresponds to spectral cutoff at =St 0.29. It is well-
known, however that modulation effects start being significant at scales
above the interrogation window size for a standard PIV approach [40].
If considering a standard cross-correlation without weighting windows,
the Modulation Transfer Function of the PIV process is a sinc function,
with attenuation of almost 40% already at a scale twice as large at the
interrogation window. This explains why the spectrum of the standard
PIV departs from the reference one already at ≈St 0.15.

DEPTV can maintain a spectral behaviour similar to the reference
up to a Strouhal number of almost 0.3, thus resulting in a significant
improvement of the dynamic spatial range.

5. Conclusions

A novel method to enhance the resolution of sparse particle-based
measurements has been proposed. The working principle is based on
exploiting the concept of Ensemble Particle Tracking Velocimetry and
enforcing it to the estimation of POD modes. The high-resolution POD
modes are then used to estimate high-resolution velocity fields. While
the proposed method does not enforce sparsity (such as the 1L -norm
minimization problem), the reconstruction of the high-resolution signal
from sparse measurements leverages on principles similar to those of
compressed sensing. The main novelty is that a high-resolution dic-
tionary is not available beforehand and is constructed directly using the
PIV snapshots and the particle images. This gives the method great
flexibility for application to experimental data also in innovative con-
figurations where benchmarks are not available.

The following remarks arise from the analysis of the results:

• The method is based on performing a projection on the temporal
basis obtained by PIV. As a consequence, flow features that are
captured by PIV but attenuated (because of a size comparable to the
interrogation window) can be recovered with theoretically null at-
tenuation. Flow features that are completely cancelled out by the
PIV process (because much smaller than the PIV interrogation
window size, or even below the mean particle spacing) can be re-
covered if some degree of correlation exists with any of the large
scales that are properly captured. This often happens in turbulent
flows and is a direct consequence of the turbulence cascade.
Nonetheless, if the correlation is weak, this recovery process might
be more difficult.

• The convergence of the process requires a relatively-large number of
samples, as typical for the EPTV process used for the estimation of
the mean flow field and flow statistics. As a good rule of thumb,
since POD is based on second-order statistics, the number of samples
to be captured should be sufficient to achieve sufficient convergence
of the Reynolds stresses at the EPTV resolution (see Ref. [13] for the
assessment of such convergence). To apply this approach, the pro-
cess should be statistically stationary. A future line of development
is the extension of the method to statistically-unsteady flows.

• High-energy modes require fewer samples to converge, as typical in
POD processing. As a consequence, the method shows its full po-
tential in flows with clear separation of scales and spectral sig-
nature, i.e. which can be represented with a compact subset of POD
modes. This should be taken into account if considering the appli-
cation of the method to spectrally-richer turbulent flows.

• The lack of convergence of the ensemble particle modes results in
significant levels on noise into these modes. The mode norm profile,
however, shows an asymptotic behaviour and it is suggested herein
to truncate the low-order reconstruction to the mode whose squared
norm is 20–100% larger than the asymptotic value.Fig. 17. Streamwise spectra of the crosswise velocity fluctuations.
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As a general remark, this is in the author’s knowledge the first self-
tunable compressed-sensing algorithm for high-resolution particle-
based field measurements. Sample code for the cylinder test is available
on GitHub: https://github.com/StefanoDiscetti/DEPTV.
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